
7 A0AI 9"8 CALIFORNIA UNIV BERKELEY ELECTRONICS RESEARCH LAB F/6 20/9
PLASMA IWEORY AND SIMULATION.IU)
DEC 80 C K BIRDSALL NOO011-77-C-0578

NCLASSIFIED NLEhh hlnhnEllhE
EmEEEEEmmmmmmE
mmmEEEmmEmmmEI

mmmmmmmmm



FORTH W~ATER PROGRESS REPORT ON I
* / PLASMA THEORY AND SIMUATION i

00.I I[90- 118

DTII
Octobe, 199881cbr 1 18



FOURTH QUARTER PROGRESS REPORT
on

PLASMA.THEORY AND SIMULATION.

October 1 to December 31, 1980
//

/ - ~

Our research group uses both theory and simulition as tools in order to increase the understanding ofinstabilities, heating, transport, and other phenomena in plasmas. We also work on the improvement
of simulation, both theoretically and practically.
Our staff is---

/

Professor C.K. Birdsall 191M Coiy Hall (642-4015)
Principal Investigator

Dr. Alex Friedman 119ME Cory Hall (642-3477)
Post Doctorate
(Moved to LLL, Nov. 17)
Dr. Bruce Cohen, L439 LLL (422.9823)
Dr. William Nevins L439 LLL (422-7032)
Lecturers, UCB; Physicists LLL

Dr. William Fawley L321 LLL (422-9272)
Guest, UCB; Physicist LLL

Mrs. Yu-Jiuan Chen,
Mr. Douglas Harned,
Mr. Niels Otani,
Mr. Stephane Rousset,
Mr. Vincent Thomas 119MD Cory Hal (642-1297)
Research Assistants

Mr. H. Stephen A u- Yeung 119ME Cory Hall (642-3477)
Programmer

Ms. Ginger Pletcher 119ME Cory Hall (642-3477)
Secretary

Mr. Mike Hoagland 199M Cory Hall (642-7919)
Research Typist

Decemnbw31, 1980
DOE Contract AS03- 76SFOO034-DE-A T03- 76ET53064

ONR C-nac 1tNO?04.-77Z45 --S7-8
ELECTRONI -ESEARCH-LABORA TORY

University of California
Berkeley, California 94720

K--



a 2

TABLE OF CONTENTS

Section I

PLASMA THEORY AND SIMULATION

A.* Lower Hybrid Drift Instability page 3

B. Magnetized Multi-Ring Instabilities 3

C.* Long Field -Reversing Ion Layers. 9

Section II

CODE DEVELOPMENT AND MAINTENANCE

A. Implicit Particle Simulation Using Moments with Orbit Averaging 13

B. A New Method for Implicit Particle Simulation 14

C. POLARES, A Two-Dimensional Electrostatic R -0 Code 34

D. SOLVER Updates 34

E.* Quiet Start Method Comparisons 34

F. ES1 Code 42

G. EMI Code 42

H. EZOHAR Code 42

I. RINGHYBRID Code 42

Section III

SUMMARY OF REPORTS, TALKS, PUBLICATIONS, VISITORS

Distribution List Accession For

NTIS GRA&I
DTIC TAB E
Unanrnouniced E]
Justif icat ion-

By~ ___

Distribution/

Availlrbility Codes
Avtiil anQ/or

Dist Special

Indicates ONR supported areas ' , )

• T -, t- -



3

- ,Section I

'uP MA THEORY AND SIMULATI6N

\\ A. Lower Hybrid Drift Instability 2d Simulains"

Yu-Jiuan Chen (Prof. 6.K. Birdsall, Dr. W. Nevins, LLL)

have improved our method of loading particles in x,y so that the initial density n(x,y)
is as near our theoretical equilibrium as posible.. As.a result, only a small amount of electron
heating was observed in the first few cycles of ulcer ybrid oscillations.

We have used small drift velocities ( VE < v1 ) in our simulations to date, allowing elec-
trostatic fields, zero beta. Unfortunately, this choice makes both the growth rates and satura-
tion levels of the lower hybrid drift instability small, hence very difficult to simulate. We are
using the multibeaming quiet start loader for ion particles. Both multibeam instabilities and the
lower hybrid drift instability have been observed.

A new diagnostic, gyrokinetic phase scattering plots, have been added to study the elec-
tron heating. We have been successfully subtracting the Ex × drift corresponding to all the low
frequency waves from the electron velocities. In our simulations, a small amplitude, slowly
growing upper hybrid wave was observed. We found the electron gyro-kinetic energy, including
electron slashing energy in the upper hybrid wave, increasing in time. However, comparing
with ion temperature, electrons are still very colc..

More study of nonlinear mechanisms will e'continued. Also simulations with larger drift
velocities will be tried, so as to emphasize the effects sought.

B. Magnetized Multi-Ring Instabilities

Niels Otani, Dr. B.I. Cohen (LLL), and
Dr. MJ. Gerver (MIT) (Prof. C.K. Birdsall)

1. Continuous rings (MJ. Gerver)
We wish to find an approximate simple expression for the stability threshold of magnet-

ized plasma whose distribution function consists of N monoenergetic components, arranged to
approximate a Maxwellian. The dispersion relation is given by Equation (5) on p. 11 of QPR
II, 1980, but with a factor of 1IN in front of the ion term, which was inadvertently left out of
Equation (5). [The solution of Equation (5) is correct in Figure 5, p. 13 of QPR II, 1980;
checked by N. Otani.] Near (a - I1, (and this is qualitatively valid as long as I W - Ifl,< fl,)
we can neglect all but one term in the sum over 1, and the dispersion relation becomes,

-In + !! " '

2 n 2 I2cV3

where we have used the large argument forms of J, and J; to obtain the last expression. The
arguments of the sine function for two consecutive values of s differ by
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k.Lvs+ k.vy k.Lv

1 (n1, Nl,

Empirically, the instability first appears at kLvjN 1j 2, which means that the different terms
in the sum over s are out of phase by - 2 radians, and the sum over all s is typically about
equal to one of the terms in the sum.

N n2 [2kY,1 1 f,2
J --.. L_ = __L (2)

(Note that this result depends on regular spacing of the rings. If the values of v, were chosen
randomly, with the correct distribution function, then the sum would be greater by v'N).

Instability occurs, roughly, when

o- IniTlfl -

11(3)

1(, ~2N

This last inequality is based on the empirical observation that instability first appears at
I = 2N/3.

Combining (1) and (2) yields

+ _iN3
2.

ii nl (4)

Combining (3) and (4) gives the condition for stability:
2O)PI

N 3 
2

+ PC
'2

This result differs by N from the rule given in QPR Ill, p. 2, 1980; some reconciliation is
needed. In practice, we must use an "effective N", which is the number of terms in the sum
over s which contribute significantly to the sum. This number will be quite a bit less (maybe
by a factor of 6) than the total number of terms N. In principle, however, o4/fl ; should go as
N2 for sufficiently large N. For N sufficiently large [probably something like 3(m1/m,) ' in
practice], there will be no instability.

2. An Electrostatic Dispersion Relation for a Uniform Magnetized Plasma Having a Discrete-
Particle or Rings-and-Spokes Velocity Distribution (Niels F. Otani and Bruce I. Cohen)

We continue to examine the electrostatic instability associated with particle velocity distri-
butions found in plasma simulation computer codes. In the previous QPR the analysis of this
instability was based on the behavior of the equilibrium distribution fo - £a, (v -v 1 ). We

now extend the analysis to include the discreteness of particles in gyrophase space ("rings and
spokes"). As before, the equilibrium is assumed to be spatially uniform and uniformly magnet-
ized.



The derivation in (a) is due to Otani. Cohen offers an alternative derivation in (b) based
on action-angle variables that confir-ns the analysis in (a) but is simpler and more compact.
Conclusions are presented in (c).
(a) Derivation of the Dispersion Relation

We choose as our phase-space coordinates 14, 0', X, Y, z, and v: where, in terms of the
usual cartesian phase-space coordinates,

V2 + v2(1

2al

G' - arcta -- - 0 t (2)
vy

X- x+ -- (3)
fl

- ic (4)

eBo
Here n - -- . Note the explicit time dependence of 9' on t.Mc

We wish to consider equilibria of the form

f 0 "= f (A' vi, 091 (5)

These are valid equilibria since A, V., and 0' are all constants of the motion. In particular, 8' is
the gyrophase measured relative to a corotating reference angle and hence is constant along an
equilibrium trajectory.

The linear dispersion relation is obtained by considering the perturbed distribution

f - fo ,v:,9') + 8f(A,v.,O',X, Y,t) (6)

Notice in this derivation we are only considering modes with spatial dependence in the plane
perpendicular to the magnetic field B0i. Also it is assumed these modes are collisionless:

Ymm- 0 (7)dt

This equation combined with the equations of motion

+ - -- 8E + --- vxB 0  (8)mn mc

yields the linearized equation

+ e -v-8E -+ e8Exv1L '2- - 0  (9)
81 M 1Mfl m l 2A 89'

Here the assumptions 8E - -Vq (electrostatic assumption) and a/Oz- 0 have been used.
Fourier transforming the time dependence we have:

iw8f(z,Wo) - dt e"v'SE. + -f dt e"tE.xv.i (10)

in which, for brevity, z - (A, v,0',X, Y). It is interesting to note that the explicit time depen-
dence of Vj.(z,t) leads to the coupling of different frequency components:

8f(za))- - -e e'°0 ( zw+f l) + a0 (1)
m'W I I81 2jA 89'

e-''8E(z,,-flML2 -f i afo (118a A 21A (12)
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Here r. vJfl and 8E* - 8,E, ± iE. . Another equation for 8E is obtained as follows

E(z,w) - - f d e'"'(V7)(zw) (13)

where
( z t) -V O(X 'y t) - X + ,tcos ('+at) 14(14)

y - resin (0'+ at)

Defining x, - (x,y), k' - (kx',ky'), and X - (X, Y), we have
. " d ~ k '  0 ~ k ' z

'70(x.L't) f (2 r)L f2d1" el (.-% "- Qt)k'rk./,) (15)

(2vr) 2 2vr
Now substituting back into Eq. (14):

dk ' f !t ke.'Xeikl'r sin ('+flt-a') (16)q (z~) -. ,(21r)2 e ;(6

where k' - -IkL'I sin a' and ky' - -Iki' cos a'. With the help of the usual Bessel identity,
we obtain

8E (z,w) - - f ik ' eiki xrJr(kjk-r,)edr(#'-a')ikZO,(k "c +I' ),(17)

A third equation may be found from

p(x,t) - f dz enoS(x - r(z,t))8f (z,t) (18)

where no is the unperturbed number density, p is the perturbed charge density, and r(z,t) are
the spatial cartesian coordinates as functions of z and t. Fourier transforming,

p(k,ca) - enof dt e'fdz e - 'k'r(z' ' ) (19)

Using Poisson's equation and the Bessel identity again,

41reno f dz •-Akz e-A'x1.xJ (k±,,)e-0(9'-0)8f (,"-Ifn) (20)

where k, - -Ik.l sin a and ky - -Ikl cos a. Substituting (12) and (17) into (20) we obtain
2,k - d9' J,(k r)J(kr) (21)

- . Z -i- (1)

teiI-I+I)'-a)f M 3 0 '
x"g + (kjw+(I'-l+1)) (22)

2('--)( a A 21A 80'g 1
+ ag - ago 0(kj'ci+VI-I-1) f)(23)

2 8Og 24 80'

where wp -- (47rnoe2/m) and go f fdv: fo.

The determinant of the implied (infinite) matrix serves as the dispersion function for the
general case fo - fo(,s,v,'). Equation (23) assumes only one contributing species of particles;
generalization to more species is straightforward. Notice that the eigenmodes for this system
do not in general have the simple time dependence F""', but instead are composed of a mix-
ture of frequencies fl apart. This is a consequence of the time-dependent equilibrium fo. As a
check we find that the well-known gyrophase-independent dispersion relation

_ ,2I-  o T 4(kj,)
1+ d-I-? - -0 (24)

is recovered when 8go/80'- 0. Also Eq. (23) is found to be consistent with the reality



condition 0 (k,w) - q(-k ,-w).

Now choose goQs,O') to be the discrete-particle velocity distribution
M n 2 r m

go0(j.o') -a,5 - ) o 2 - + 0)) (25)

where a., 0, A,, and M are constants. In this case Eq. (23) reduces to

-, 2 eiJMn (#-a) kar,_Pko) na.kr (26)
kz 2 .M,, j 2 An.

(I+jMn)Jli2J+jM. +/J/IJ'(+jM.

x ). (kz, c-jM. fl) (27)

The argument of all Bessel functions is kjr.; r, is the gyroradius corresponding to An.

For the rings-and-spokes distribution, Mn a-M and 0,, -- for all n. Equation (27)
may now be written as

b(k,(OJ+jM) - Ajj.O(k,+j'M) (28)

where

.jj- !p D (I+1M,A) (29)

and

D(14j - n ~(9-a)[llD(I,Aj) - w1 a ,l I+Muj + (I+MAj)Jl+MAJJ'1 (30)
n krtn

We find that A is hermitian when wa is real and see that only terms such that
MIN1I <4 2k(r.),, contribute since J(k 1.r.) goes to zero very rapidly once Ill is appreciably
larger than kjr.. In particular, if M > 2k(r.). only diagonal terms contribute. In other
words, the rings-and-spokes distribution behaves essentially like the corresponding gyrophase-
independent distribution when the wavelength is longer than the spacing of M particles
arranged on a circle of radius (r,).

(b) Alternative Derivation

An alternative and somewhat simpler derivation is based on the use of action-angle vari-
ables as described in Aamodt et aL (1981). The Vlasov equation can be written as

I

f(t) -f(0) - f dt' (H,f), (31)

where H is the Hamiltonian and ( is the Poisson bracket. The single particle Hamiltonian for
a flute mode (kB - 0) is

H - Ho + H - jsfl + q exp (ikx - iowt) + c.c.- (32)

Afl + q$YJ,(kvjfl) exp (n - iw ) + c.c., (33)

where X and Y are the x and y guiding center positions, A -= mv 2 /2fl, 0 - arctan vjvy,
n a qBolmc, Bo is a uniform external magnetic field in the z direction, and k has been taken
parallel to i without loss of generality. The Vlasov equation can be linearized with respect to
H|/ Ho:

- f dt f I 8M. 8fo 8 O fo 
(34)

f" 80 81A 8A 80
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In Eq. (34), the equilibrium distribution function fo has been taken to be independent of X
and Y, as we assume the plasma to be uniform.

Canonical transformation to the new variables (0j) using the generating function
F2 - (9 - f t)il gives 9- 8F2/ - 0 - f t, 1 - " 8F2/60, and H - H + 8F2 /8t - eO,
where

eO - erkEJ, exp [in(j+(lt) - icat] + c.c. (35)

To zero order in the perturbation eo, the equations of motion are trivial,

(WjlX, Y) - 0; (36)

all of the independent variables are now constants of the zero order motion. A suitable equili-
brium distribution function composed of N9 angular spokes is given by

N,

fo - noN "t 18(9 - Oj)fo(bar). (37)
i-1

Equation (34) becomes
nfo + J Of o

f, exp (ikx - iot) - -q$ o - 80 exp[in(+(flt) - iwot. (38)(a -nfl
Use of Poisson's equation -V 246 - 4ir Tqf f v fd i enables us to obtain a dispersion

relation

k4 - 4r q, f did-O f. -" (39)

4v'noq2fdif°(w), - " OOW (40)

x Nj'1Y exp fi(n-l)(Oj+flt)1] (41)
j

If the angles Gj are evenly spaced, 9j - (j-)2r/Ne, then

Ni'Y. exp [i(n-I)(Oj+ft)j - exp[i(n-1) fl t]g8,+N,., (42)

where 8,, is the Kronecker delta and m - 0,:t 1, • • -. Hence,

k2  - k2y , exp (irnft) - 1. 4rnoq2f dW fo(W), l p (43)
t $

n-a IJ)- (n 1I)JIhx 1: 8W 8.+wepUn-p~t,(4
t.fi W - pfl - nfl $.+,v x inIpIt,(4

f r o m w h i c h f o l l o w s n-L j. 2i

4, noq2 f difo(W) (45)

n JNn- -( N - mNJ,, * ail,

+ 8W 8W-rfl-nfl+Ne / (46)
,aMa -
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Equation (28) in (a) is easily recovered from this expression.
The discrete evenly spaced angles have produced an alias coupling of temporal modes

separated in frequency by mNgfl, where m - 0,±1,±2, As argued in (a), we can arrange
for the coupling to be weak and thus recover the desired dispersion relation for an equilibrium
with no gyrophase structure,

1 - .noq' f dil fo(j!) 8Wn,47
k-2 n-nfl

$ H

if the coefficients multiplying _,Nv for m * 0 are negligible, so that only the coupling of .

to itself survives in Eq. (46). For small argument, the Bessel function has the limiting form
J.(z) - (z/2)'/,!, and lJ,(z)I << 1 for Izi < v/2. In a typical simulation with a thermal
velocity distribution, max (v) < 4v,,. Hence the argument of the Bessel functions in Eq.
(46) satifies the inequality z - kvjfl < (4krv h/fl). The coupling of , to ,-mN will be

negligible if

No > (8k.Xv~hf). (48)

The analysis of Kim and Otani in QPR II, 1980 describing the multi-beaming instability of a
warm magnetized plasma made up of many rings forming a Maxwellian velocity distribution can
then be applied to Eq. (47). Generally speaking, for N equally weighted rings, stability can
be achieved for

N,> -I .(49)

Thus, a quiet-start simulation ought to be stable to magnetized multi-ring instabilities if the

inequalities in Eqs. (48) and (49) are both satisfied.

(c) Conclusions
In conclusion, dispersion functions for the general distribution fo(.,v,,O'), the discrete-

particle distribution, and the rings-and-spokes distribution have been derived and found to be
consistent with well-known gyrophase-independent dispersion relations. We find that the eigen-
modes are in general not simple sinusoidal functions of time but are instead a mixture of fre-
quencies. However, in the case of the rings-and-spokes distribution it was shown that the
different frequencies decouple when the number of particles per ring (i.e., number of spokes)
becomes somewhat larger than k(r.) ,...x in which case the dispersion relation reduces to its
gyrophase-independent counterpart. With a sufficient number of discrete 9' and A classes
(spokes and rings) it should then be possible to perform quiet-start simulations that are staLtle
to magnetized multi-ring instability.

(d) Acknowledgments
We are grateful to W. M. Nevins for a number of illuminating discussions and to C. K.

Birdsall for his interest and encouragement. The research of B. [. Cohen was performed under
the auspices of the U. S. Department of Energy at Lawrence Livermore National Laboratory
under Contract W-7405-ENG-48. Reference
R. E. Aamodt, B. I. Cohen, Y. C. Lee, C. S. Liu, D. R. Nicholson, and M. N. Rosenbiuth,
Phys. Fluids, 24, 55, (1981).

C. Long Field-Reversing Ion Layers

Douglas S. Harmed (Prof. C.K. Birdsall)
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(1) Paper

The paper following (3) was presented at the Third Symposium on the Physics and Tech-
nology of Compact Toroids in the Magnetic Fusion Energy Program held at Los Alamos,
New Mexico, Dec. 2-4, 1980. It summarizes work on ion layer kink instabilities done
through the end of October 1980.

(2) Code Development

The following modifications have been made during November and December to our
two-dimensional hybrid code, AQUARIUS: (a) The mover has been vectorized, produc-
ing a factor of 2.7 increase in efficiency. (b) Finite electron pressure has been included.
(c) A new version has been developed which employs conducting wall boundaries and has
the capability to handle vacuum regions.

(3) Results

Two new results have been obtained from AQUARIUS: (a) New diagnostics have enabled
measurement of the real part of the frequencies of ion layer kink instabilities. These fre-
quencies have been found to agree with theoretical predictions. (b) Saturation of ion
layer kink instabilities has been found to be due to heating of the layer. The heating,
which occurs during instability growth, causes the layer to thicken. As the layer becomes
thicker the betatron frequency of the layer particles is reduced. Once the betatron fre-
quency has become sufficiently low, then the self-magnetic field index drops below the
instability threshold value and the instability ceases to grow.

Kink Motion of Long Field-Reversing Ion Layers

Douglas S. Harned

Electronics Research Laboratory
University of California

Berkeley, Caitfornia 94720

Kink instabilities have been studied in long field-reversing ion layers. The configuration
is shown in Figure. 1. An ion beam, at radius R and of thickness a, crosses an external mag-
netic field BE-B:'. The beam current, Jh,, produces a self-magnetic field, B5, which tends to
reverse the total magnetic field on axis. The layer is immersed in a uniform background plasma
such that nb <<n., where nb and n. are the densities of the beam and plasma, respectively.
There is assumed to be no variation in the axial direction (i.e., 8/8z-O). Kink modes in these
layers correspond to perturbations of the form e-e,exp (inO-iwot), with n ,2.

Long layer kink modes have been studied by Lovelace'. Analytic results were obtained
for uniform layers with sharp boundaries within the approximations (a/R)2<<1,
(w./nfl) 2<<1, and v,2constant, where fi is the layer rotation frequency and vA the plasma
Alfven velocity. Stability thresholds were obtained for two cases: (1) a2<< (VA/a) 2 and (2)
W 2 <(vA/a) 2 with W 2<<i, where w, and wi are the real and imaginary parts of the frequency.
In both cases the condition "s1<n 2-1 was found to be sufficient for stability, where -", is the
self-magnetic field index. If 4 is defined to be the loading factor (4---B..(r-0)/B..), then 77, is
of order (2R/a)C.

In order to have a useful comparison for our simulation results it was necessary to gen-
eralize the preceding theoretical analysis by eliminating the assumptions &j2<(vA/a)2 , c -3<ci 2,
and v,=constant. In addition we chose to study the stability of a rigid rotor distribution. The
approximations were eliminated by performing a numerical solution of Lovelace's equations.
With the less severe constraints on frequencies our numerical results produced more restrictive
requirements on the self-magnetic field index for stability. Minimum values of 7), for
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instability are shown in Table 1. It can be seen that the thresholds i.:rease with increasing
background density.

A two-dimensional simulation code, AQUARIUS, has been developed and applied to ion
layer kink motion. The code treats ions as particles and electrons as a massless fluid. The
Darwin version of Maxwell's equations are used (i.e. the transverse displacement current is
neglected). Maxwell's equations are coupled with the electron momentum equation (with iner-
tial terms neglected) by the assumption of quasineutrality to determine the time evolution of
the electric and magnetic fields. The ion particles obey the equations of motion. Standard
particle-in-cell techniques are employed to determine forces and accumulate currents.

The code is initialized with an equilibrium exponential rigid rotor ion layer distribution.
Instabilities have been observed corresponding to n-2,3,4, and 5 modes. Figure 2 shows the
particle positions in their initial state for a layer with 4=1.4. In Fig. 3 the particle positions of
this same layer have become significantly perturbed after an n-3 mode has grown to large
amplitude. When linear growth rates from simulations are compared with the predictions of
our numerical extension of the theory in Ref. 1, excellent agreement is obtained. The simula-
tion results and the corresponding theoretical growth rates for an ion layer with R/a==5 are
shown in Figs. 4 and 5. The maximum growth rate for a given mode occurs at n---od/fl,
where oap is the layer betatron frequency. Figure 5 shows how the growth decreases with
increasing background plasma density. Nonlinear effects have been found to halt the linear
growth of kink instabilities. The saturation amplitudes decrease with increasing azimutha' mode
number. The instabilities have been observed to grow and saturate without destroying the
field-reversed layer. Kink instabilities instead result in a thicker field-reversed state with many
non-axis-encircling particles. The final state appears to be stable but with higher electric fields
and substantial electron currents.

1. R.V. Lovelace, Phys. Fluids 22, 708 (1979).

Instability Thresholds

n-2 In-3 n-4 n-5
.00250 0.4 2.2 5.0 8.5
.00125 1.0 4.2 8.0 12.0
.000625 1.8 5.0 9.5 15.0
.0003125 2.0 6.0 1 11.0 18.0

TBL. 1. Instability threshold values of the
self-magnetic field index.

8S Be

ZR Z
s Ro

FIG. 1. Schematic of an infinitely long
field-reversing ion layer.
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FIG. 2. Initial particle positions in the r-9 FIG. 3. Particle positions after ten ion-

plane tar an ion layer with C-~1.32. cyclotron periods. An n-3 instability has
grown to a large amplitude and nonlinear
effects have become important.

.15~~ ~ _ _ _ _ _ _
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0.01
OOA 1L 6-0.0 .001 MA .002 0

FIG. 4. Growth rates, wi, for ion layers FIG. 5. Growth rates of n,-2 modes for ion

with (R/a)==5 and (YA/C)-.OOI 2S as a layers with (R/a)==S and 4-.65 as a func-

function of the loading factor. tion of background plasma Alfven speed.

(0 n-2,A #;-3,C iim4Qn'5).
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Section H

CODE DEVELOPMENT AND MAINTENANCE

A. Implicit Particle Simulation using Moments with Orbit Averaging

V. Thomas (Dr. B. I. Cohen LLL and Prof. C. K. Birdsall)
A first attempt at including orbit averaging in electrostatic implicit moment particle simu-

lations has failed. The motivation for attempting to include orbit averaging in a moment impli-
cit code is for the improvement of particle statistics. ( See the previous QPRs for implicit
moment simulation references and orbit averaging references. ) The algorithm is shown in Fig-
ure 1. Starting at time NAT with EN+I: we advance the particles from NAT to (N+I)AT.
Then we use the current density averaged over the micro steps from (N-112)AT to
(N+1/2)AT and the charge density averaged over the microsteps from NAT to (N+I)AT to
predict the charge density at time (N+3/2)AT via

N+ 3/2 - (p)f+I12  _ .i N+ I / (50)
8x

and

7+1 - V(up_ .{D)N+I/2 -anN+12E ~A T (51)

a M. I a~x i I~j

the brackets indicate orbit averaginf and the tilde indicates a predicted quantity. P is the pres-
sure, alpha is the species label, E is a linear combination of E , EN+ ', and ENv2 , and n
represents the particle density. The field at time (N+2)AT is solved for implicitly by

-(-)V20 +2 - EV246N+ 1- N+3/2 (52)

where AN+3/2 is predicted from the first two equations. e is a biasing parameter intended to
control dissipation.

This algorithm is unstable , even for small time steps. We are working to understand the
results and we are persuing alternatives.

N AT (N + I) AT (N+2)AT

Velectron

Figure 1. Using ENv .I the ions and the electrons are advanced on possibly different time steps up to the time
(N+ I)AT. Then EN+2 is solved for implicitly and the cycle repeats.
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B. A NEW METHOD FOR IMPLICIT PARTICLE SIMULATION

Alex Friedman", A. Bruce Langdono , and Bruce I. Cohen"

The following is a brief account of our recent work on implicit

methods for particle simulation. The algorithm we describe, named BAAL

(for Bay Area ALgorithm), was developed during the final quarter of

1980, while one of us (A.F.) was a postdoctoral associate with the

U. C. Berkeley Plasma Theory and Simulation Group. This work, which has

application to both inertial and magnetic confinement fusion plasma

simulation, is continuing at the Lawrence Livermore National Laboratory,

with continuing close ties to the U. C. Berkeley group.

The first section below (written primarily by A.B.L.) has been

excerpted from our contribution to the 1980 LLNL Laser Fusion Annual

Report. It provides an overview of our work, and describes an ideal

(gridless) form of the algorithm. The second section below briefly

describes the cloud-in-cell algorithm used in the testbed code developed

at U. C. Berkeley. The final section presents some illustrative

results. Details of this work, other forms of the BAAL algorithm, and

our analyses of the time-differencing algorithms will be presented in

future publications.

*Present affiliation: Lawrence Livermore National Laboratory

*Affiliation: Lawrence Livermore National Laboratory
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1. Ideal Algorithm

We have made several advances in the quest for more efficient

simulation of low-frequency plasma phenomena. Our most adaptable and

reliable tools for study of kinetic plasma behavior are the "particle"

codes, but the stability of these codes has previously required

* resolution of the electron plasma period in the time integration, even

* when the phenomenon under study took'place on the much-longer ion time

scale.

Analogous limitations on time step in other problems, such as heat

flow and chemical rate equations, are overcome through the use of

implicit time integration schemes. In particle codes, although implicit

methods have been analyzed theoretically,1 their application has been

Inhibited by the very large number of nonlinear equations to be solved

simultaneously, about equal to the number of particle coordinates plus

the number of zone quantities (electric and magnetic fields).

We have begun to experiment with a new method for solution of these

equations in two steps. In this method, equations are first set up for

the fields. Although these equations involve information from the

particles, the number of equations to solve simultaneously is only the

number of field quantities, defined on the zones. Since the number of

zones is much less than the number of particles, and the resulting

matrix equations are sparse and well conditioned, their solution is

convenient with known methods. Once the fields are kcnown, the particle
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coordfnates can be readily solved for serially, one particle at a time.

Here, we will discuss simulations having only the electrostatic field.

First we consider finite-differenced equations of motion for the

particles which have the necessary stability at large time-step and are

accurate for the low frequency phenomena to be studied. In Ref. 3, a

centered expression for the time derivative is employed. Use of this

expression leads to a numerically stable algorithm at large wp&t, but by

itself does not damp high frequency components of the motion, which are

aliased into the Nyquist frequency - stable odd-even oscillations of

large amplitude can persist. In Ref. 2, the derivatives are biased

using a scheme such as

V _- = ( 4a_ )At (in)

xA - = ( 4n+1 4n-1 V )At (1b)

This scheme damps unwanted high-frequency oscillations, while low

frequencies are very weakly damped, as desired: (Im)/wO(cAt)3 . Such

schemes are members of a class whose application to plasma simulation

has been analyzed in detail in Ref. 1 and in our present work. We have

also devised a different class of schemes, whose simplest member is

2( V=.1/2--Vn-/2 ) - ( Vn_1/2-vn_3/2 ) = a,+1At (2a)

Xn -xn M vn+1 /2
A t (2b)
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This scheme has the same order of accuracy as Eq. (1), while requiri~zg

less storage of time levels. The presence of the acceleration at only

the n+1 time level increases the damping of high-frequency oscillations.

The optimum design of these difference equations is the first issue in

practical implementation of large time-step methods.

In all implicit schemes the new positions x,+1 depend on the

accelerations a,+, due to the electric field E,+.,. But this field is

not yet known, as it depends on the density p,+, of particle positions

{zX,+ 1 . The solution of these coupled particle and field equations is

the other major implementation issue.

In the method developed by Denavit I and Masons3 for this

solution, the fields at the new time level are predicted by solving

coupled field and fluid equations, in which the pressure tensor is

approximately evaluated from particle velocities known at the earlier

time. After the fields are known, the particles are advanced to the new

time-level, and, if desired, an improved pressure tensor is calculated

and the process iterated.

It is also practicable to predict the future electric field E+

quite directly by means of a linearization of the particle-field

equations. Since this method and its implementation in the experimental

code BAAL have not been described previously, we outline the concept

here.
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implicit time integration scheme, can be written as

n at 2an+1 + X( 0 )  (3)

where 0#11 and x(O) is the position obtained from the equation of

motion with the acceleration a,+, neglected. Since x( O ) depends only on

positions and accelerations at times tn and earlier, it is known. In

its simplest form, the BAAL algorithm is derived by linearization of the

particle positions relative to (0)

One can regard the actual position, xn, as plus a

displacement dx = pAt 2an+1 . We form a charge density P(°) from
x(Oj', the actual charge distribufion is then 1(O) plus the change 6p

-x(O)

brought about by displacing particles by the amount dx = xn+ 1- n+

Linearized, this Increment to p isi

6P = -V[p( (x)6x(x)l (4)

To the same order of approximation, the displacement 6x(x) of all

particles with x(O) 2 x is obtained with an . evaluated at x, i.e.

6x(x) at Iat2(q/m)En (x) (5)

We then have

6(x) = -V'[x(x)Ea.1 (x)J (6)
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where the effective susceptibility is

x(x) = )(X)q]t2 = 1o.2(X)At2  (7)

Note that X depends only on the particle positions x(O)}, and not at

all on velocity information as required in the moment equation methods.

With these two source contributions, the Poisson equation becomes,

in rationalized c.g.s. units,

^*E(0) _V.(XE.z (8)
VEn+1 mP-n+(

or

= P(O) (9)-V'[~x]~n+ = n+I

This elliptic equation is solved by standard methods. The field -Vson+l

and (5) are then used to calculate the positions xn+lj. This algorithm

is reminiscent of the method for solution for the vector potential A in

some magneto-inductive plasma simulation codes.
4'5

Should it be necessary, we have shown how to refine the

approximations used above by: linearization about a more accurate

prediction of xn4  than x(o) iteration, and a more accurate evaluation

of dx.
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In our spatial-difference representation of these equations, Eq.

(4) becomes the gradient of a zonal p with respect to particle position,

and 5x in Eq. (5) depends on the electric field in two zones, using the

usual interpolation. In this way we are assured that the density pn.1

of final particle positions {x,+} satisfies the code's representation

of the Poisson equation, -V2(p+5 = pn+,' so that desirable features

built into the time-differencing scheme will be realized in practice.

We are delineating the limitations of implicit methods and learning

how to surmount them. For example, it is observed that an unphysical

cooling of the electrons occurs when uncentered equations of motion are

used. Our analysis provides guidance to design algorithms which retain

desirable dissipation of high-frequency oscillations while minimizing

this unwanted cooling. This side effect is related to the damping of

Low frequency oscillations; both are smaller in our schemes above with

third-order damping than in lower-order algorithms.
3

To date, the BAAL approach has been verified in application to ion

acoustic oscillation and two-stream instability, with wpAt in the range

2.5 - 4.0. Numerical stability and correct dispersion of the testbed

code have been verified for a cold simulation plasma up to wPAt = 25.
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II. Cloud-in-Cell Algorithm

The testbed computer simulation program we have developed, BAAL,

employs well-known particle-in-cell techniques to assure a smooth

interpolation of the zonal electric field onto the particle locations

and of the particle charge onto the charge-density grid. We illustrate

the scheme with a fully-implicit (backward differenced) model algorithm;

the actual code is far more general.

In the model algorithm, each particle k is advanced via:

v l= v4 + (q/m)AtEm*'(x )+l (10a)

Atv 1. (lOb)Xak t - X:k tvml

For each cell J, we write the charge density as:

PT+, = (q/Ax)rS(xr -x ), (i)

where the "shape function" S is the finite-size particle analogue of the

Dirac delta function, and the sum is taken over all particles k iv'hich

overlap cell j to any degree. The calculation of E1+ 1 requires

knowledge of pm+ 1 before we have explicit knowledge of the xm+. In

essence, the BAAL algorithm calculates this charge density implicitly by

approximating it as a linear function of Em . We compute a simple

(this is (o) of the previous section) to xk+ l via:approximation 1k n+ k
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xa + Atv, (12)
= k + tk.

which for this simple model is just a "free-streaming" location. We

expand the shape function in a Taylor series:

sX k  xJ) A' S(;k-xj) + (X=+l_' aS, (13)

and note that the expansion is exact for linear-spline particles which

do not cross cell boundaries as a result of the new acceleration,

i.e. which intersect the same cells at xm+1 and We approximete the

coefficient of the first-derivative term via

X31+-1k (q/M)At2Em+l (Xm l)

X k - ' ~ kI

(q/m)At2ZS(xk-xi)Em+l (14)

with a relative error of order TrAAt2 i qEAt m e 1, where

Local* is a typical scale length over which E varies. This

approximation imposes a limitation (shared by the moment-equation

method) on Lscale and IE! for the simulation to be valid. We are

considering modifications to the algorithm which may eventually allow us

to relax this restriction.

Using Eqns. (11), (13), and (14), the field equation solved is:

( V E) = J Oo v +4 lw ijE1 15
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where the "conventional" charge density is:

Peoi)= rqs( X-x), (16)

and the "weights" W,, couple each cell to its neighbors when particles

are present:

*W1  = (q 2 At 2/m)ZS(k-X)OS(;k-Xj)/k. (17)

For linear splines Wij=O whenever ti-j[>1. Since for linear splines

aS/aXk = ±1/Ax (or zero), there is considerable redundancy in the

calculation of the pj(a .. ) and the W,, and it turns out that (at least

for the unmagnetized id electrostatic code) the number of operations

needed to weight all necessary quantities to the grid is the same as the

number needed in the conventional ESI code. Since the field

interpolation and charge deposition steps tend to dominate the particle

processing time on a vector computer like the Cray-1, the algorithm is

potentially very efficient.

At present, the field equation is written in terms of the

electrostatic potential 4p, and is solved by successive overrelaxation.

Direct solution is more difficult to generalize to higher dimensional problems.

Spatial filtering is provided for through use of a fast Fourier transform on the

potential obtained after the field equation has been solved.
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I1. Code Results

As a first check of code performance, we initialized a cold

electron plasma (with immobile ions) in a run with parameters wp=1.0,

At=10.0 (run "CLD2"). For this run, the BAAL testbed used a

time-centered version of the model difference scheme described in this

section. Thirty-two cells, and 128 particles, were employed, 'nd there

was an initial excitation of mode I (the longest wavelength mode).

Figure (1) shows a "history" of the energy in this mode as a function of

time. An oscillation with a period of 160 is clearly evident in the

figure. What is not evident is that the oscillation is in fact a

modulated odd-even oscillation in time, i.e. with a frequency differing

from the Nyquist frequency i/At by only the small shift 6w=27/160. To

understand this, we observe that the dispersion relation for this

"trapezoidal rule" scheme is:

2/w At = cot w t/2 (18)

= tan (n/2 - t/2),

Thus, the mode frequency
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SIr/At - 4/w PAt2  (19)

so that the frequency shift is 6& f 4/w pAt 2 
- 0.04 leading to a period

of 157. Similar behavior was observed for At=25.0.

When the difference scheme of Eqn. (1) is employed, the odd-even

oscillations (aliased plasma wave) are observed to damp out rapidly,

with Yobet-aO.07. This compares well with the predicted damping factor

prod--0.069. Similar damping is obtained when "stiffly stable" schemes

such as that of Eqn. (2) are employed.

As a first model problem, we consider the electron-electron

two-stream instability arising from the relative motion of two cold

beams of infinite spatial extent. The first run made, "EEOO", was a

benchmark, using the conventional ES1 leapfrog simulation algorithm and

a small timestep, At=0.25 with cop(total)=1.0. For this run, a grid of

32 cells was employed, and 128 particles were used to represent each

beam. No spatial filtering was employed (the capability had not yet

been implemented), and thus the fastest growing mode was that with the

shortest wavelength, mode number 16. Figure (2) is a plot of the field

energy as a function of time for this run; the analytically predicted

growth rate for the parameters chosen, normalized to the plasma

frequency, is 7pred0.3 1 , while the observed growth rate is.29.

Thus, despite the fact that the mode in question has a wavelength of

only two cells, there is good agreement with simple theory.
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For comparison with the above run, another ("EE03") was made using

the BAAL testbed code. The timestep was ten times as large, At=2.5, and

a time-centered version of the model algorithm of this section was

employed. Thus, there was no damping of the aliased plasma oscillations

at the Nyquist frequency (these would not be visible in a field energy

plot anyhow, since only the square of the electric field enters into

that diagnostic). The results of this run are shown in Fig. (3). The

instability is not evident until a later time in the BAAL simulation;

presumably this is due to a smaller initial level of excitation of the

unstable mode. Once visible growth begins, it is clear that the growth

rates in this run and the previous run are very nearly equal, while the

saturation level in the implicit code run is only slightly lower than

that of the ESI run. There is thus good agreement with both simple

theory and the benchmark run, despite the poor resolution of the mode in

question on the grid.

As a second model probleme , we consider an ion-acoustic traveling

wave, with wpe=l.0, At=3.0 (run "IA04"). For this run, the time-level

biasing of Eqn. (1) was employed, as was a spatial filtering which

discarded all but modes 1-4, and which filtered modes 3 and 4 rather

heavily. Mode 2 was excited, there were 128 grid cells, the mass ratio

mi/me was 16, and there were 2048 electrons and 512 ions. The cystem

length L was 6r, the electron thermal velocity vth,e was 0.25 (the ions

were cold), the Debye length ND was 0.25, and the wave vector k was

0.25. The sound speed c. was 0,0645, and the wave frequency w was 0.0161

_ _ _ _ _ _ _ _ _ _ _ _ __a . ... ..________.._,_........__.......,_.........___......... .. . ... .._i__....__ A,
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leading to a period T of 390. Figure (4) is a "snapshot" of the

smoothed ion density as a function of x at the beginning of the run.

The corresponding quantity at time t=210 (slightly more than half a wave

period later) is shown in Fig. (5). One predicts that the lefthnnd peak

should have moved 210c,=13.59 units during this period of 70 timosteps,

and measures a traveled distance of 19.3-6.1=13.2. Thus, the phase

velocity of the wave is essentially correct. At later times mod, 4

comes up out of the noise and the clean structure visible in the-e

snapshots disappears.

We have succzrsfully modeled ion acoustic standing waves with mass

ratios up to 160G and timesteps At as large as 4.0.' Up to 6000

timesteps have been employed in these runs, which are "noisier" than the

one described above despite the fact that only a single mode was

allowed.

Our future plans include the modeling of warm two-stream

instabilities wherein the physically fastest-growing mode is well

resolved in the simulation, and the verification of the correct behavior

of a plasma expanding into vacuum. Practical application of these

methods to problems in inertial and magnetic confinement fusion will be

forthcoming.
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C. POLARES

Niels F. Otani (C. K. Birdsall)

The master-slave structure of the POLARES code described in the last QPR is now in
place, although rough spots still remain. We find the new code reproduces results obtained
from the old code. The predicted graphics flexibility appears to have been realized, though
some bugs remain. Also difficulty has been encountered in the organization of the history file,
and corresponding portions of the code will probably have to be rewritten. Restart and negative
timestep capabilities (see previous QPR) have not been installed but the prospect of their suc-
cessful implementation remains promising.

We have learned from A. B. Langdon (private communication) that the master-slave
organization used in this code is not the most efficient since the code must generally wait to
regain core each time a switch between master and slave is made. In this regard and also from
the point of view of ease in coding, the use of overlays probably would have been preferable.
However, the present format, having already been written, will be maintained.

D. Solver Updates

H. Stephen Au-Yeung

(1) New Parameters

Several new parameters have been added to SOLVER to allow the user to override the
labels and to override the lower and upper bound of the graph; they are:

Hori Horizontal label.

Vertre Vertical label for the real part.
Vertai Vertical label for the imaginary part.

Headre Heading label for the real part.

Headai Heading label for the imaginary part.

Xmin Lower bound of x.

Xmax Upper bound of x.
Remin Lower bound of the real part of the root.

Remax Upper bound of the real part of the root.

Aimin Lower bound of the imaginary part of the root.

Aimax Upper bound of the imaginary part of the root.

Wmin Lower bound of the second argument w.

Wmax Upper bound of the second argument w.

(2) Get around the limitation of 1024 points for function plotting

When plotting a function vs. one argument, one could plot as many as 2048 points by
specifing the following in the input file of tty:

nx-2048 nw-i

E. Quiet Start Method Comparisons;

Random, Bit Reversed, and Fibonacci Numbers

H. Stephen Au-Yeung, and Yu-Jiuan Chen (Prof. C.K. Birdsall; Dr.
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A.B. Langdon, LLL)
Quiet starts for Maxwellian distribution [or other f(v) or n. (x)) use some set of uniform

numbers for inverting the cumulative distribution function. The set may be regular or other.
We have chosen to make some comparisons among sets stimulated in part by the work of
Denavit and Walsh (1980) using Fibonacci numbers based on that of Wick (1979, 1980).

An earlier method used by A.B. Langdon in ESI, subroutine INIT (since June 1978) is to
invert f (v) using uniform numbers from slow to fast, hence highly correlated, and then to
scramble positions [n (x) - constant] in order to reduce correlations using a bit reversed
method.

The main reason for using the quiet start loader is to reduce the noise level. The noise
will be increased by particle bunching. Therefore, we decided to compare the uniformity of the
numbers generated by the Fibonacci number method, the bit reversed method, and computer
(CRAY-1) generated random numbers. Keep in mind that uniformity (lack of bunching) is not
the only test, as correlations that excite various ((a,k) preferentially are also unwanted; tests of
the latter kind have not been made as yet.

Fibonacci numbers are defined as
Ctf+1 - C'm + an-l, n - 1,2, •••( )

with ao - al - 1. The sequence is 1, 1, 2, 3, 5, 8, 13, etc. Following Wick, we use N parti-
cles with N - a,, to attempt to fill a unit square uniformly by using

I 1
2 - 1, • • • N-a (2)

where (x, ,y) is the location of the 1th particle. Figure 1 has (xy) scatter plots for N - 233,
377, 610, 987, 1597, 2584, 4181, and 6765. There is no mystery here; the xs step across
slowly and the y,'s step up rapidly, both uniformly, creating the 2d space lattices shown. The
resolution of these patterns required photo printing (fiche); if done on the Versatec, with less
resolution, spurious bunching resulted, sort of Moire patterns. The Fibonacci method clearly
produces highly correlated (xyy). For example, suppose the particles were allowed to free
stream as

x'- x - yt modulo I

Y -y

treating y like velocity. Using N - 987, note that at t - 1, there will be roughly 21 nearly per-
fect vertical bars, such that if (xy) were (x,vx) there would be a large density produced in
mode 21, defeating the pufose of the quiet start. At other values of t, other Fibonacci "cry.
stals" will "resonate" similarly.

For the bit-reversed method, we set N - 2" where n is an integer. The x are chosen as
before, with x, - (i + /) / N, with i running 0 to N-1. The y are chosen using the bit-
reversed algorithm in ESI plus a 1/2N. The scatter plots are shown in Figure 2, for N - 64,
128, 256, 512, 1024, 2048, 4096, and 8192. This method appears to our eyes to avoid correla-
tions in small (xy) regions (no obvious lattice) although there are a few closely spaced (x-
y's). (There appears to be symmetry about :t45 .) Hence, the resonance possibility or magni-
tude appears less here.

Bit reversed fractions were not familiar to us, so a short explanation and algorithm is
given here. The table below makes bit reversed fractions from the binary equivalent of the
XI'S.
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n N Decimal Binary Binary reversed Fraction
0 1 Xo - 0 0. .0 Yo " 0

1 2 x,-1 1. .1 y- 1 /2

x 2 - 2 10. .01 y2 I/4
2 4 x3 - 3 11. .11 Y3" 3/4

x4 - 4 100. .001 Y4" I/8

x 5 - 5 101. .101 YS - 5/8
x6 - 6 110. .011 A - 3/8

3 B x?- 7 Ill. .111 Y- 7/8

x8 - a 1000. .0001 Ys m 1/16
x 9 - 9 1001. .1001 y9m 9/16
Xto- 10 1010. .0101 Yto - 5/16

xH - 11 1011. .1101 Yu - 13/16
x 12 - 12 1100. .0011 Y12 3/16

X13- 13 1101. .1011 y3- 11/16
x14 - 14 1110. .0111 Y14 - 7/16

4 16 x5 - 15 1111. .1111 YIS- 15/16

5 32 16-31 10000.- 11111. .00001 - .11111 1/32 -31/32
6 64 32-63 100000.- 111111. .000001 -. 111111 1/64- 63/64

The values of y used in ESI are those in the table plus 1/2N. A readable code for producing
the bit reversed (y, + 112N) follows.

integer Num, n, K, KthBit, TwoToK
real B
namelist /in/ n

c
c Read in n
c

read(59,in) n
c
c Bit reverse algorithm for n bits
c

Num - 2"*(n-1) - I
do 10 I - 1, 2*°(n-1)
Num -Num + 1

c
c Reverse Num into B.
c The "and" function performs a bit-by-bit logical and
c to its arguments (Num and TwoToK in this case).
C

B-0.
do 20 K - 0, N-I

TwoToK - 2"K
KthBit - and(Num,TwoToK)
B - 2.*B + KthBit/TwoToK

20 continue
c
c B/(2*'n) here is the 'th number in the bit reverse sequence
c

write(59,9010) B, B/(2"'n)
c
10 continue

call exit
c
9010 format ( 8.0, 4x, f15.8)

end
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end

For n - 1, this produces I and bit reversed fraction plus 1/2N - 1/2
2 1, 3 and 1/4, 3/4
3 1, 5, 3, 7 and 1/8, 5/8, 3/8, 7/8
4 1, 9, 5, 13, 3, 11, 7, 15 and 1/16 etc.
5 1, 17, 9, 25, ... , 31 and 1/32 etc.

Both the Fibonacci and bit reversed methods tend to fill y space uniformly with only the
first few x,'s (or with any partial set of the xi's). This is the point of the uniformity seen in the
figures. Hence, if v,'s are selected sequently (say, from inverting f(v) - exp-v 2/2v, 21,
meaning highly ordered, then using these methods to scramble the x's will tend to produce the
full f(v) over a small region is x. This filling obviates the need for dividing x-space into sub
regions each filled with f (v) and then repeated.

Figure 3 shows (xy) scatter plots where the y's are random numbers generated by the
CRAY-I computer and xi - (i - 'A) / N.

Figures 1, 2, and 3 appear to show that the Fibonacci number and bit reverse methods
produces very good uniformity and that the random number generator produces considerable
local (and probably global) bunching. Let us define a goodness number D, following Wick
(1979) in order to measure the uniformity of the number sets just produced.

D =--max - L- xyl 3

for all x and y which satisfy

0 < x, y < (4)
and Ny is the number of particles in the sub-rectangle (0,0), (0,y), (x,0), (x,y), i.e.,

0<x, < x and O<y,<y (5)
If the number set is uniformly distributed and N approaches infinity, the corresponding number
D should be zero. D was calculated for the three methods mentioned above is shown in Figure
4 as a function of N. The Fibonacci number and bit reversed methods produce essentially the
same degrees of uniformity with D 3 / N. The random number result is D ==I / %N.
Hence, Fibonacci and bit reversed are smaller by roughly 3 / vN.

As a further test, we used the cumulative velocity distribution function to assign velocities
v to a set of beams whose envelope is f (v,), and then used the three different number sets to
scramble the particle positions, x. For a given Maxwellian velocity distribution function, the
goodness of the local thermal equilibria were examined, by calculating the average of the first
six velocity moments over a width Ax <L,the system length. We then compared the width Ax
at which the average local velocity moments departed by 10% from the expected values, for
each of the three different number sets. We found that for a large particle number N( Z 10 3)

both the Fibonacci number method and bit reversed method produce very good local thermal
equilibria. Details will be given in the next QPR.

References
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F. ES) Code
No special progress to report.

G. EM) Code
No special progress to report.

H. EZOHAR Code
No special progress to report.

I. RINGHYBRID Code
No special progress to report.



43

SECTION III

SUMMARY OF REPORTS, TALKS, PUBLICATIONS, VISITORS

A. Talks
(a) Three talks were presented at the APS Division of Plasma Physics meeting Nov. 10 - 14,

1980, San Diego; the abstracts were given in the previous QPR.
(b) See paper by Harned in this QPR, presented at Compact Torus Meeting, Dec. 2 - 4, 1980,

LASL.

B. Publications

ERL Memo. No. UCB/ERL M80/40 by Y-J Chen and C.K. Birdsall was accepted by Physics of
Fluids.
ERL Memo No. UCB/ERL M80/20 by Y-J Chen and B.I. Cohen was accepted by Physics of
Fluids.

C. Visitor

M.J. Gerver spent a week with us Nov. 1980.

D. Conference
Workshop on Long Time Steps in Particle Simulation, Dec. 8, 9, 1980 was organized by C.K.

Birdsall and A. Friedman of UCB and B.I. Cohen and A.B. Langdon of LLL. The meeting
notice and schedule follows:
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WRS OP CIO~r TIME STEPS IN PARTICLE SIMUIATICN

Decenber 8 and 9 (Monday and Tuesday), 1980
8:30 a.m. to 5:30 p.m.
Woodward Rcm
Bechtel Engineering Center
University of California, Berkeley

The recent work of Jacques Denavit and Rod Mason on implicit integration
schemes and of Cohen et al., on orbit averaqing has inspired this meeting. Many
others have also contributed ideas on relaxing the numerical stability conditions
on the time sten in simulations.

The meeting format allows plenty of time for speakers and discussion. The
tentative program is attached. The only special rule for the workshop is that
one person speak at a time, as there is auple time for all viewpoints.

The objects of the workshop, in no special order, are:

to discuss in great detail Denavit and Mason's implicit
scheres and the BAAL implicit alcrithm

To collect ideas on w A>>1 stability and accuracy
requirements and kvAtPissues

appropriateness of centered vs. damping time integration algorithns

to address possible new problems associated with implicitness,
e.g., generalizations to multidinensions and/or E24 codes, boundary
conditions, spatial filtering

to choose problem areas of importance for applications

to understand possible enhanced nosiness in implicit methods,
e.g., due to collection of higher plasna mnments

to design implicit time differencing algorithms

to consider melding implicit methods with time filtering
and orbit-averaging methods in order to reduce noise

lastly, to categorize and generalize methods that do not
and canrot work

* * * * * * * * *

The meeting roam is a few steps from Cory Hall (northeast corner of Campus)
where we have our c mputer terminals connected to NMFEC. Hence, we can try
thinqs out at any time during the wrkshop. This workshop is limited to the
twenty people invited.

Charles K. Birdsall Bruce Cohen
Alex Friedman A. Bruce Langbn
ECS Dept., Cory Hall Lawrence Livenre
University of California, Berkeley National Laboratory
Berkeley, CA 94720
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*3rksbop on Inq Time Steps in Particle Simulation, December 8, 9, 1980, U.C. Berkeley

Monday, 8:30 a.m. Welcoming remarks C.K. Birdsall

A. MDrning Session 8:31 a.m. A. Bruce Langdon, Chairman Time in
Minutes

Jacques Denavit "Tire Filtering Particle Simulations with 60
Northwestern W pe A>16

Rodney Mason "Mplicit Momnt Particle Simulation of Plasmas" 60
IASL

Jack Byers "Long Tire Step Electrostatic Quasineutral Model 15
LLL for Magnetized Plasmas"

Vincent Thomas "Orbit Averaqinq in Implicit and Explicit 15
Bruce Cohen Electrostatic Codes"
U.C. Berkeley

Lunch 12:30 Faculty Club, Lewis Room

B. Afternoon Session 1:30 p.m. Jack Byers, Chairnman

Jerry Brackbill "Implicit Methods Applied to 2d, EK Codes" 60
David Forslund

A. Bruce Langdon "BAAL Implicit Particle Algorithms" 60
Alex Friedman
Bruce Cohen
ILL
Alex Friedman "An Experimental BAAL Code" 60
Bruce Cohen
A. Bnre Lngdon

Bruce Cohen "Design of Time Integration Algorithms" 60
A. Bruce Langdon
Alex Friedman
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Tuesday, 8:30 a.m.
C.MnTime in

C. Mkrning Session 8:30 a.m. Adam Drobot, Chairan Minutes

W. W. Lee "Gymkinetic Particle Pushing Model" 30
PPPL "Multiple Scale Simulation Model"

(Simulation of drift wave problems in a
1hzmogenious; plasma)

Brendan Godfrey "Iterative Inversion of Implicit Equations" 30
MEC

Viktor Decyk "Dawson lon Tise Step Sdhees" 30

Bruce Cohen "I licit Magneto-Inductive Hybrid Code, Orbit
ILL Averaging and Filtering"

Robert Freis "2d Orbit Averaged Simulation of a Mirror Machine" 30
Bruce Cohen
ILL

Lund 12:30 Faculty Club, Lewis Rcm

D. Afternoon Session 1:30 p.m. C. K. Birdsall, Organizer

Ruzp Sessions, to be set up by discussion leaders picked during Sessions A,B,C,
in order to cover topics needing more discussion.

End by 5:30 p.m.
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